if ye=1M. Note that (34) determines the transient time in a column closed at both ends and, consequently, by
an appropriate choice of the rate of circulation (») of the apparatus operating in the scheme illustrated in Fig.
1c, the same equilibrium concentration can be achieved in a much shorter time.

NOTATION

o, mass flow rate of the liquid through the channel in unit time; D, binary diffusion coefficient; «, ther-
mal diffusion constant; p, density; B, volume expansion coefficients; &, gap, i.e., the distance between the two
constant-temperature surfaces; AT=T,~T; T,, T,, temperatures of the heated and cooled surfaces T = (T, +
T,}/2; m, dynamic viscosity; B, length; L, height of the apparatus; =z, vertical coordinate; x, longitudinal co-
ordinate; K = g*p’826"(AT)?B/91%’D; c, mass concentration; T*, transfer of the purposeful component in the
vertical direction in units of mass in unit time per unit length of the apparatus; m* =pd; t, time; f, area of
transverse cross section of the channel; w, rate of flow of the liguid in the channel; yg = HL/K; w, 6, £, ®,
see Eqgs. (8); u, see Eq. (12); and p, an operator. Subscripts: e, upper channel; i, lower channel; 0, initial
value, and K, end of the apparatus.
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STABILITY OF THE INTERPHASE SURFACE 1IN
THE FREEZING OF MOIST GROUND

Yu. S. Daniélyan and P. A. Yanitskii UDC 624.131.4/5:625.123

It is suggested that the formation of ice layers should be regarded as a consequence of a loss
of stability of the motion of the freezing front. The kinetics of the freezing process is investi-
gated and a stability criterion is obtained.

The freezing of moist ground is accompanied by the migration of moisture, i.e., by a redistribution of the
initial moisture. Experiments show that in different grounds and for different modes of freezing the redistribu-
tion of the moisture leads to various textures of the frozen rocks. In particular, in certain cases ice layers
are formed, and sometimes monotonic freezing, etc., occurs. There are different ways of describing the vari-
ous aspects of this phenomenon. Examples are given in {1, 2]. Below we carry out a theoretical analysis based
on a study of the stability of the process. The formation of ice layers is treated as a consequence of the loss
of stability of the motion of the freezing front with respect to small perturbations.

The one-dimensional freezing problem, taking into account the migration of moisture, can be described
in the following form [3]:

T, &T,

= » O<<x<<s(D),
at “ ox? @
oT, _ . 0T
o ¢ oot
ow W sy <<x<<L.
ot on2

Theinitial conditions are

W, O)=W,, Tolx, 0)=T

H

and the boundary conditions are

V. 1. Muravlenko Giprotyumenneftegaz. Translated from Inzhenerno- Fizicheskii Zhurnal, Vol. 39, No. 1,
pp. 96-101, July, 1980. Original article submitted July 2, 1979.
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for x=10 kiﬂL=Q,,
Ox

aT,

k=L Mt =0Q, W(L =W,

for x=5s(f)
Ty (s(t), t)=To(s(), ) = Ty, g = K_%‘f_ ,

Ty . oT,

ox T oox
To a first approximation we can assume that the thermal parameters are independent of the temperature

and the moisture content. In addition, we will use the quasi-stationary hypothesis for the temperature field.

Then, the equations for the temperature distribution can be integrated and the problem can be formulated as
follows:

M

—xg =w(W—W,).

oW . oW
ot axz '
ow
=g, W(L, {) =W, W(x, 0)=W,.
0% rmsr)

On the movable boundary the Stefan condition is specified as follows taking migration into éccount:
A—ng=no(W--W,).
Here A = A(8Ty/8%) — 2,(8T,/0%x) = const in view of the quasi-stationary hypothesis.

There is an expression for g in the literature of the form q = ¢ (W—Wpg). This condition determines the
flow from the melted zone intothe frozen zone. However, one must take into account that for the same differ-
ence in the moisture content the migration flow depends on the amount of ice inthe frozen front. The presence
of ice on the left of the front leads to an additional inflow of liquid into the frozen zone. This is pointed out in

[4, p. 65] in an experimental study of the migration of moisture into mountain rocks. A similar phenomenon
was observed in [5]. The additional inflow of liquid will be taken into account here in the following form:

g= K @iy w—w,,
ox

where {(I) is a monotonically increasing function of the ice content, énd 1 =W-Wg+q/v is the ice content ofthe
frozen front. From Stefan's condition on the movable boundary we can write

=4 (1)

“o

1t is of interest to analyze the stability of the stationary solution with respect to two types of perturbations.

The first case corresponds to the application of a perturbation to the moisture content in the case ofa plane fro-
zen front. The loss in stability here may lead to the fromation of icy streaks parallel to the front. The second
case represents the stability of the solution with respect to a small deformation of the shape of the frozen
boundary and represents the possibility of "icy tongues" forming, i.e., layers of ice perpendicular to the front.
We investigated the general case when the moisture content varies and the shape of the frozen front is simul-
taneously deformed. This enables a single criterion to be obtained reflecting the stability of the solution with
respect to the two different forms of perturbation.

In the light of the above we will formulate the problem which describes the one-dimensional migration of
moijsture into the melted zone when the frozen front is displaced and when A is the difference in the heat fluxes
at the point, and x = s(t) is a constant

ow 274 02w «
= s{f) <<x<Coo, —oo<Cy<] oo,
ot ( oz T o |50 y (2)
Wi(x, y, 0)=W,,
ImW =W, lim W<Coo,
X0 yroo
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A—ng=ww(W—-W) ) @)

KWy s reyw—wy [*7 50 @
Ox J
where F(v) is a monotonically decreasing function, and F(v) = f(An/v). The mode of freezing in which the mois-
ture content and the ice content in the front are constant, will be called stationary. The stationary solution W{x~
vit, y} will be written in the form

Jﬁzﬂﬁ_:em)(_ﬁdizﬂQE, (5)
W — W, K

where Wy is the stationary moisture content on the front, and v, is the stationary velocity directed along the x
axis. This solution satisfied the heat-conduction equation (2).

Below we will investigate the stability of the solution {5) by the small-perturbation method. The method
of obtaining the main relations in this method is taken from [6].

The perturbed distribution of the moisture content has the following form:
W =W, +¢-exp(mx - ipy -+ nt), {6)
where W, is the unperturbed distribution of the moisture content, m and n are complex constants, p is a real

constant, and ¢ is a small quantity.

The perturbation in Eq. (6} is periodic along the y coordinate with a frequency p, and disappears as x—vw,
i.e., the perturbed distribution of the moisture content satisfies the following condition on the right boundary:

limW = W,.

X—+oo
This is always satisfied when m satisfies the inequality Re m<0. Otherwise the values of m in this paper wili
be called extraneous. Substituting the right side of Eq. (6) into Eq. {2) we obtain n= K(m’—p?). The moisture
content, the migration flow on the movable boundary, and the velocity of the front can be represented in the
usual perturbed form

W = W, + W,exp(Qf 4+ ipy), "

g = g1+ gy exp (U - ipy), (8)
9

U = vy - v exp(Qf + ipy).

Here Wy, d;, and v, are the unperturbed values of the moisture content and the migration flow on the frozen
front and the velocity ofthe front, and in addition,
Q= muy + K (m2 — p?). (10)
Substituting (6)-(9) into Eq. (2) as well as the conditions (3) and (4) we obfainthe following relations:
KQ

Up = — (E"‘WQL
1

g, = K (ms-+ (e — Ws) i;(i_j ’

/

QZ _\L (Wli - WH) U‘.’. + viW?. = Oa
Go = (WH_“ W}K)F;UZ + (OL + Fi) Wz-

The value of m is found from the condition for the last four uniform linear equations with the four unknown g,
vy, Wy, and & to be compatible, namely,

ke ke
0 ! o 2
P U Y
1 0 Uy —K (m + —K—) = 0.
1 —F (We—Wy) —(a+ Fy) 0
1 W,—W, Uy -0
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. Expanding this determinant we obtain the equation

Q- am +b (11)
cm - d
or, taking (10) into account
agm® + aym? + aym -+ az = 0, (12)

where a;=Kc; a; = cv; +Kd; a,=dv,—Kcp>-o; ag= Kpld—b; a =—F(F;+v,); b=—(v;/K)F(F,;+v)), c=K({1+
¥y); d=-—(F;—v,F'). Separating the real and imaginary parts in (10) we obtain the following relations:

ReQ = (v; +- K Re m) Re m — K (p? +- Im?m), (13)
ImQ = Imm (v, 4 2K Re m). (14)
Bearing in mind that easily verified inequality ad—bc >0, in view of the well-known property [7] of frac-
tional-linear transformations of the form (11), we can write
sign (Im Q) = sign (Im m). , (15)
Comparing (14) and (15) we can write for the roots of system (10) and (11), having nonzero imaginary parts, the
inequality '

Rem>— L
~ 7oK

At the same time, for any m which satisfies the relations

——;‘— < Rem<0,

using (13) we can obtain
Re Q< —K(IPmm -+ p?) < 0.

Consequentliy, the complex roots m correspond tothe case Re <0, or, which is the same thing, unstable solu-
tions of the initial problem correspond to real roots of Eq. (12).

Owing to the continuous dependence of the roots mjonthe initial parameters, the transition from a stable
solution to an unstable solution (cRe m < 0) may occur either for m real and Q = 0, or in the case of a change in
the sign of the coefficient g, in (12). In the latter case one of the roots changes from —« to +o or vice versa.
It is easy to show that system (10), (11) has no real solutions m for €= 0. Consequently, this transition is only
possible when the sign of a; changes.

We will consider the degeneration of Eq. (12) as #,—0, i.e., when F', =—1, separately. One of the roots
m, in this case approaches +o or —« depending on the sign of qy/a, (see, e.g., [8]). If F|——1+0, this root goes
to +», as was mentioned above, or remains stable or extraneous (i.e., Rem >0) over the whole region 1+ ¥,>0.

We obtain the remaining two roots m§ and mf for F\=—1
mg __—(w—F)— V2(;é1 + F2 - 4K2p? <0,
mg = — (Wi — F)+V (v + F? + 4K2p2 0.

2K
The root mg is extraneous, and substituting mg into (11) we obtain Qg< 0. Hence, according to the above, both
roots are stable or extraneous for any other initial parameters also.

Finally, the criterion of stability looks as follows: ¥’ >—1, or in different notation

A S S
2 (W, — W, 72 W, — W,

"

fi<<

It can be seen from the expression obtained that when the velocity v, changes from small to large values, the
unstable freezing mode changes to a stable mode. Consequently, the unstable mode e.g., freezing with the for-
mation of ice layers) must be expected for small velocities. Similarly, a change in the initial moisture content
from small values to high values leads, other conditions being equal, to a loss in the stability of the solution.
Consequently, nonuniform freezing is more likely to be observed at high initial moisture contents. These prop-
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erties of the stability criterion are in good qualitative agreement with the experimentally established facts
(see, e.g., [9, 10]), characterizing the formation of a cryogenic texture: a) an increase in the rate of freezing
is characterized by more uniform formation of ice, and b) an increase in the initial moisture content facilitates
more intense formation of ice.

The absence in this criterion of the perturbation parameter p (6) enables us to conclude that the loss in
stability of the freezing process may lead to the formation of layers of ice both parallel and perpendicular to
the freezing front.

It should be emphasized that the stability criterion obtained only reflects the necessary conditions for ice
streaks to form. In other words, the criterion describes the thermal situation in which the loss instability may
lead to segregation ice separation. In particular, another case is possible when the loss instability leads o a
periodic distribution of the ice content over the length of the specimen, without the formation of ice inclusions.
To determine the sufficient conditions for the formation of streaks it is obviously necessary to carry out a
physical-mechanical analysis of the processes which accompany the crystallization of moisture in the ground
[11].

In conclusion we note that the development of a fairly reliable method for the experimental determination
of the function f would enable the criterion obtained to be used in practical predictive calculations.

NOTATION

s(t), coordinate of the moving front; I, length of the specimen; k, moisture conductivity; W, moisture
content; %, heat of phase transition; Wy, amount of unfrozen water; q, flow of moisture from the melted zone
into the frozen zone; v, velocity of motion of the front; T;, temperature; Q@j, heat flux; A, thermal conductiv-
ity; ai, thermal diffusivity (i =1 is the frozen zone and i = 2 is the melted zone); «, the mass transfer coef-
ficient; and Ty the initial temperature.

LITERATURE CITED

1. V. G. Melamed, "Mathematical formulation of the problem of the freezing of moist ground taking into ac-
count the migration of moisture and the conditions under which ice layers are formed," in: Frost Re-
search, No. 9, Moscow State Univ., Moscow (1969). i

2. G. M. Fel'dman, "Calculation of the migration of moisture and determination of the complex texture of
the ground on freezing," Inzh.-Fiz. Zh., 13, No. 6, 176-181 (1967).

3. V. G. Melamed, "Mathematical formulation and algorithm for solving the problem of heat and mass trans-
fer in-moist finely dispersed ground when there are phase transitions," in: Frost Research, No. 10,
Moscow State Univ., Moscow, 79-90 (1969).

4. N. S. Ivanov, Heat and Mass Transfer in Frozen Mountain Rocks {in Russian], Nauka, Moscow (1973).

5. Ya. E. Geruzin and N, N. Ovcharenko, "Surface phenomena in the periodic crystallization of a thin layer
of recooled melt," in: Surface Diffusion and Flow [in Russian], Nauka, Moscow, 201-208 (1969).

6. G.I. Barenblatt, Ya. B. Zel'dovich, and A. G. Istratov, "Diffusion- thernal stability of a laminar flame,”
Zh. Prikl. Mekh. Tekh. Fiz., No. 4, 21-26 (1969).

7. M. A. Laverent'ev and B. V. Shabat, Methods of the Theory of Functions of a Complex Variable [in Rus-
sian], Nauka, Moscow (1973), p. 736.

8. M. V. Meerov, Yu. N. Mikhailov, and V. G. Fridman, Principles of Automatic Control [in Russian}, Nedra,
Moscow (1972), p. 488.

9. F. M. Shemyakin and P. F. Mikhalev, Physical-Chemical Periodic Processes [in Russian], Izd. Akad.
Nauk SSSR, Moscow— Leningrad (1938), p. 243.

10. N. A. Tsytovich, Mechanics of Frozen Ground [in Russian], Vysshaya Shkola, Moscow (1973),
11. E.D. Ershov, "Mechanism of migration-segregation ice separation in freezing and thawing disperse
ground," Vestn. Mosk. Univ., Geol., No. 3, 80-97 (1977).

785



